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Abstract. High-temperature local field correlations are needed to calculate the angular 
variation of the electron spin resonance (ESR) linewidth of exchange-coupled systems in the 
paramagnetic phase. In low-dimensional magnetic systems, these time correlations are 
usually calculated by appealing to arbitrary intermediate functions to interpolate between 
short- and long-time regimes. In this work. we Calculate the correlation function of the 
dipolar field in a two-dimensional (2D) square lattice ofspinsb. for several orientationsof an 
external magnetic field. Arbitrary interpolation functions are avoided by assuming that the 
normal modes of the spin correlations behave diffusively as soon as quantum coherence is 
broken. Theeffectsofinterlayerexchange in an actual system are considered by introducing 
a cut-off in the 2D diffusion. The angular variation of the resulting ESR linewidth is analysed 
as a function of the 'quantum coherence time' zll and the cut-off time re. Comparison with 
experimental data in layered Cu-amino acid crystals allows us to estimate zo S O.Sfi/J and 
rc = 200hiJ. where I is the in-layer exchange. 

1. Introduction and background 

I, I, Electron spin resonance linewidth in exchange-coupled systems 

Our purpose is to study the electron spin resonance (ESR) linewidth of systems in the 
paramagnetic phase (high temperatures), which are described by the Hamiltonian H = 
H ,  + H ' ,  with H ,  = Hz + Hex, where Hz is the electronic Zeeman interaction, He, = 
$ J Z i j S i .  S, is the nearest-neighhour isotropic exchange interaction between electronic 
spins (S = 4) and H '  includes other interactions, such as magnetic dipolar or hyperfine, 
which constitute a perturbation on Ho. These interactions, which verify [H', H,] f 0, 
are the major source of ESR linewidth in these systems. Its effect can be illustrated as 
producing 'local fields' at each spin site, and the effect of the exchange interaction is to 
introduce a dynamics in these local fields, which can be described by the correlation 
function [l, 21 

V( t )  = ([H'O(?)! s+][S-, H ' l ) / ( S + s - )  (1) 
where H'O(t) = exp(iH,t/h)H' exp(-iHot/R), S is the total spin of the system and the 
angular brackets indicate the statistical average of the quantum operator. In anisotropic 
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systems, t) also depends on the angles 8, rp, which give the orientation of the applied 
magnetic field referred tox. y ,  L axes fixed on the magnetic system. 

When the exchange energies are smaller than the Zeeman ones, (secular case [3]), 
the time dependence of tp is determined only by He,, and the ESR linewidth can be 
expressed as [2 ]  

A M Cennaro and P R Leustein 

When H' is linear in electronic spin operators, as is the case for the hyperfine 
interaction, equation (1) tells us that *(e. q ,  t) involves two-site spin correlations 
{Si(t)SJ), It can beshown that, in thiscase, angular and time dependences are separable, 
i.e. yr(8. Q?. t )  = vi(@, rp)v:(t), with ?$,(e, p) = M,(8, rp), the second moment of the 
corresponding interaction [3]. Using equation ( 2 )  it can be seen that in this case the 
angular variation of the ESR linewidth will be the same as that of M 2 .  

In the case that H' is quadratic in spin operators. as is the case for the magnetic 
dipolar interaction. ?# involves four-site spin correlations. and it can be separated 
only at short times, when under the usual decoupling approximations only self-site 
correlations are important [4-61. In this short-time regime. ?#;'(e, q . ~ )  = 
M$(O,Q?)qr"(t) is obtained. As time grows, pair correlations with more and more 
neighbours become important, the angular dependence evolves with time and Y J ~  is no 
longer a separable function. The angular variation of the ESR linewidth will then depend 
on the relative weight of the different angular functions along the time integration in 
equation ( 2 ) .  

1.2. Case of dipolar interaction in two-dimensional sysrerns 
I t  is well accepted that in exchange-coupled systems. high-temperature spin dynamics 
at  long times is governed by diffusive processes 171. Then, the long-time dependence of 
spin-pair correlations appearing in p will obey (S,(t)SJ) = /-@ , where d is the dimen- 
sionality of the exchange network. Thus, in low-dimensional ( d  < 3) magnetic systems, 
iji is expected to have a slow decay. having long-time tails that can weight strongly in the 
integral of equation ( 2 ) .  

A quasi-ideal magnetic ?D system is characterized by an exchange interaction J 
between in-plane nearest neighbours that is much larger than the exchange J' between 
out-of-plane neighbours. i.e. J/J' 9 1. Richards [8,9] has made the maincontributions 
to the understanding of ESR data in low-dimensional systems, when dipolar interaction 
is the major source of linewidth. He showed that, owing to diffusive effects, the angular 
and time dependences of yd become separable at long times, and that in this regime the 
angular dependenceisconstant in timeand proportional to theq = 0 modeofthedipolar 
second moment, i.e. y j ( 8 ,  q, t )  = ( M 2 ) q = O ( B ,  rp)tl,"(t). He also showed that in quasi- 
ideal ZD systems the contribution of the longtime regime of vd is predominant in the 
time integral of equation (2) and thus A H ( 8 ,  Q?) = ( M 2 ) q = 0 ( 8 ,  rp). 

In non-ideal 2D systems. i.e. those with J '  not negligible with respect to J, the ZD 
diffusion process becomes3D at earlier times than in the quasi-ideal case, causing a much 
faster decay of the spin correlations. To simplify the calculations, it is usual to consider 
wd as vanishing after a certain cut-off time sc, which at first sight can be thought as in 
[lo]. 5, = h/J ' .  The more elaborate reasoning of Hennessy etnl yields the expression 

where a' = !i in I D  systems [8, 111. Using the arguments of these authors applied to 2~ 
systems, n = 1 isobtained. 

T, = (J/J')*(h/J') (3) 



High-temperature dipoiar locaifield correlations 457 

With the earlier transition to the 3D diffusive regime, the longtime angular depen- 
dence of yd will have a smaller weight in the integral of equation (2), and the angular 
variation of the linewidth will depend on the short- and intermediate-time angular 
functions. In this context, it is important to establish the upper limit of validity of 
the short-time behaviour, and the lower time for the diffusive behaviour. Several 
approximations have been considered in previous works [9,12]. none of them con- 
sidering the angular variation at intermediate timesand interpolatingarbitrarily between 
short- and long-time angular dependences in the calculation of A H .  

In our group, we have studied by ESR layered Cu-amino acid systems [ 131 for which' 
interlayer exchange interactions could be roughly estimated to verify 5 s J/J' 6 1.5 
[13,14]. Several interactions contribute to the linewidth in these systems. They can be 
isolated by analysing the angular variation of the linewidth in terms of the theoretically 
calculated angular dependence of each of the contributions [13]. Our usual practice was 
to include a term proportional to to take into account the dipolar contribution. 
Although this procedure gave reasonably good fits, we show in the present work that 
the dipolar contribution to the linewidth in these 2D systems. which are far from ideal, 
should have a smaller anisotropy than the one given by (M2)q=u. We apply the results 
obtained in this work to the experimental data in a Cu-amino acid system in which only 
dipolar interaction contributes significantly to the ESR linewidth. 

To perform the calculation of the dipolar contribution io the linewidth in a system 
with non-negligible interlayer exchange, we need to know the precise way in which 
the angular dependence of yld evolves from that of M2(B, rp) at short times to that of 
(MZ)q=O(e. QI) in the diffusive regime at long times. To have a picture of this evolution, 
we calculate the dipolar local field correlation function in a simple 2D system for several 
orientations of the external magnetic field. We then analyse the angular dependence of 
theresultinglinewidth asafunctionof rc, which gives the degree of'two-dimensionality' 
of the system. We also analyse the resulting anisotropy in the linewidth as a function of 
the time r,, at which it is assumed that quantum coherence is broken. 

2. Theory 

We will consider a square ZD lattice of N isotropic spins with S = a, having isotropic 
exchange and magnetic dipolar interactions, in the presence of an external magnetic 
field whose magnitude is such that Zeeman energy is greater than exchange. Thus, in 
the notation of the preceding section H '  = H i .  and the secular approximation [3] will 

Following Kubo and Tomita's formalism [l] at high temperatures, the resonance 
absorption spectrum I ( @ ,  QI, w )  at the Larmor frequency w g  is given by the Fourier 
transform of the relaxation function Q, 

. 

* he valid. 

Q(@, 'p. r )  = exp ( I  - ( l / f i ? )  dz ( t  - r)yld(e. q, z)). (4) 

Here, yld isgiven by equation (1). using H '  = H;, and H, = H,, because of the neglect 
of non-secular contributions. Replacing H,, and HA in equation (1). yields - 

qd(e, 9, t) = (s+s-)-' C. ~,~~,(si(~)si(z)s;si) 

F,; = +(gp)*(3 cos2 e, - l)/r3,. 

( 5 )  

(6 )  

i . j . h . 1  

where 

Here, g is the gyromagnetic factor, p the Bohr magneton and e,, is the angle between 
the intersite vector rii and the magnetic field H .  
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The next step to calculate yd i s  to decouple the four-spin high-temperature cor- 
relation functions appearing in equation ( 5 )  [9,15], and to transform equation (5) into 
reciprocal space, 

yld(e, 9,  r )  = 2 Z  IF,I'((s:(T)sI,)(s~,(T)s:) (7) 
q 

where (S; (T)S: ; )= ( ~ / ~ ' ) Z , , , ( S Y ( T ) S ; " )  exp(ig.r;,), where U =  t, - or L, iF,I= 
(l/dN) Z,F, exp(iq. r,,), and q runs over the first Brillouin zone. 

The behaviour of the spin correlation functions (Sg(r )S;")  at high temperatures 
and short times is well described by a Gaussian decay [1,6], i.e. only self-correlations 
are important while quantum coherence is preserved, and this regime will be valid up to 
a certain time zu. In q-space, 

(S;(T)SZ;) , ,  = (S;(O)SI;) exp(-w:t?/z) (T < 50). (8) 

Here, w, is the exchange frequency, calculated from a short-time expansion [6] as 
CO: = (1/2h2)zJ'. where z is the number of nearest neighbours. 

For times longer than T,,, we assume that the local fields at different sites can 'see' 
each other. Thus, the spin correlations are no longer restricted to self-correlations, 
different site pair correlations begin to grow, and the spin dynamics may be associated 
with the first steps of a diffusive process, described by the hydrodynamic equation 1161 

{S;(r)S:;) , ,  (S;(r,)Sr;)exp[-Dq'(r - r o ) ]  ( T >  T o )  (9) 

Usingequations(8) and (9) inequation (7). the dipolarlocal field correlation function 
where D is the spin diffusion constant. 

may be written 

v!,(~,rp,~) = i e x p ( - w t + ) C I ~ ~ I ~  ( r  < T o )  (100) 

V ! ( O ,  q, r )  = ik exp[-2Dq2(r - ro)1(F,12 ( T O  < T r c )  W b )  

Vi"(O, 9;. T )  = 0 (T > 5,) (104 

P 

4 

where k = exp(-wfr:) to satisfpcontinuity, and we have assumed for simplicity that, 
at the cut-off time r,introducedin equation (3), V goesabruptly tozero. Itcanbeshown 
easily that d Zq/Fqb/* coincides with the dipolar second moment M 2 ( 0 ,  rp), thus yielding 
the familiar expression yIi(0. q?, T )  = M2(0, 9;, T )  exp(-w:s2) for T < ru [2]. 

Replacing equations (10) into (4) and assuming that we only need to know @ ( I )  for 
I > re, the Fourier transform yields a Lorentzian ESR line [l], with a peak-to-peak 
linewidth calculated from equation (2) as 

2 j r  

0 7 0  

A H ( O , q ) - z ( M : ( O , r p ) l  dTexp(-wfT2) +I drWa(O,p . r ) ) ,  (11) 

Thus, the linewidth is expressed as the sum of a short-time contribution, having the 
angular variation of the dipolar second moment M2, plus a contribution whose angular 
variation is not easy to establish, because Vi'(O, q, 5 )  is not separable, except for long 
times where it is proportional to (M2)pr0. We may ask what we mean by 'long times', 
i.e. when is the angular variation Vd (M,),=,established, and what will be the resulting 
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angular variation of the linewidth for non-ideal 2D systems, for which T~ is much smaller 
than in quasi-ideal ones. 

3. Model and calculations 

We calculate the local field correlation function $Vd(O. p?, 7) given by equations (lo), 
for a ZD 21 x 21 square lattice of spins 4, coupled by exchange and magnetic dipolar 
interactions. The cell parameter, called a ,  is arbitrary, with the only restriction that i t  
should lead to a dipolar interaction much smaller than the exchange interaction, to 
justify our perturbative approach. Only secular contributions [3] are retained. 

As was discussed in the previous section, we assume that only self-site correlations 
are important in the calculation of q!, (short-time regime). Two relevant questions may 
be asked: Up to what time does this regime persist? When do correlations with other 
sites begin to be non-negligible? We propose that after a 'quantum coherence time' r,,, 
which should be of the order of h/2J [17] and could be taken as the upper limit of the 
short-time behaviour, the first steps of a diffusive process take place. This assumption 
leads to the continuity of qd at 7 = ru in a natural way, without resorting to arbitrary 
intermediate functions. Thus, it is possible to follow the time evolution of the angular 
variation of 7pd. 

In order to perform the calculations, it is necessary to know the relationship between 
the spin diffusion constant D and the isotropic in-layer exchange parameter J .  Several 
authors [S. 16-18] have obtained 

D/a? = 6J jn  (12) 
where 6 depends on dimensionality and effective spin, taking values in the range 
0.2 S 6 S 0.5 for ZD systems and S = t .  Here. the two extreme values will be taken into 
account in order to determine their influence on the final results. 

Using equation (12) in equation (10) and introducing the dimensionless variables 
X = Jr/h and Q = aq, the dipolar local field correlation function qd(O. p?. z) can be 
written as 

1 
qd(e.p?,X)=4~l/Q12E(X,Q) Q (13) 

with 

X S X O  

E(X ,  Q)  = exp(-2X?,) e x p [ - 2 W  - &)(Q: + Q:)I X , < X < X ,  r-2p) X>X, 
and X,, = Jso/A, X, = Js , /h .  In this way, qd(O, q, X) is expressed as a sum of normal- 
mode contributions satisfying the matching condition between short-time and diffusive 
regimes. Each term of the sum is'weighted by thefunctionE(X, Q), whichcontains the 
timedependence. Ascan beseeninequation (13), the timevariationisQ-independent in 
the short-time regime, but for the diffusional regime, E ( X ,  (2) acts as a 'filter', producing 
a faster decay of the larger-Q contributions. Consequently, for times long enough, only 
the Q = 0 mode survives, yielding the dominant contribution to qd. This is essentially 
the same result as Richards [9]  obtained, but our procedure also yields information 
about the intermediate-time regime of qd. 
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Figure 1. Angular dependence of the dimen. 
sionless high-temperature dipolar field corrc- 

00 

01 lation function calculated at different 
dimensionless times X = Jrlfi, for X,, = 0.5 and 
6 = 0.5, in a square lattice of spins 1 and cell 
parameter a: (a) X = 0: ( b )  X = 0.75; (c) X = 
1 .5; (d) X = I O .  H 11 2 (0 = O")~corrcsponds to the 00 

0 6 0 B o r *  120 180 magnetic field normal to the layerof spins. 

The orientation of the magnetic field H is given relative to an orthogonal system 
w,here .? a n d j  are coincident with the square lattice axes. The fast decay of E ( X .  Q) as 
afunctionofQ,andQ,allowsustolimitthecalculationof ~ J ~ ~ t o t h e i n t e r v a l Q ~ , ,  Qy S x, 
This results in an error less than 1%. except in the limited range XI, < X < 1. For each 
orientation(8,q)ofHandforaZl X 21gridintherangeO~ Q A , Q v  S.7,thejFQ,I'were 
calculated considering spins at distances not greater than 5a. TO test the validity of 
our approximations, we calculated 5 XQlFQ12. which agreed within 5% with the exact 
calculation of M,. 

We calculate the values of the linewidth AH, using equation (11). The integration 
could be performed analytically by insertingequation (13) into ( l l ) ,  which yields 

4. Results and discussion 

Figure 1 displays the angular variation of yd calculated at different dimensionless times 
X, considering XI, = 0.5 and 6 = 0.5. I n  the figure ya is multiplied by the factor 
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Figure 2. Dimensionless dipolar field correlation function Venus the dimensionless time X ,  
for X , ,  = 0.5 and 6 = 0.5. for two different directions or the external magnetic field: along 
thelayer(HjJ~.)andnormaltothelayer(HI/ i ) .  

to give a dimensionless result. Figure l ( a )  shows that for lpd(O. q ,  0) = M z ( B ,  q), the 
maximum value of wd is reached at the2 andg axes, i.e. when H lies along the layer (xy 
plane). This angular variation remains constant over the short-time regime ( X S  X,). 
At X = X,,, the beginning of a diffusive process is assumed, and for subsequent times 
the angular variation evolves as shown in figures l (b ) - (d ) .  For X = 10, figure l ( d ) .  the 
angular variation of qd fits well the (3  cos' 0 - 1)'behaviour calculated by Richards 191 
for ( M &  =,,. If we consider the case 6 = 0.2, the process is more sluggish, and it is found 
that this angular variation is established at X = 23. Thus, it  can be stated that the 
decoupling between angular and time dependences proposed in [9] is already valid in 
our case for times r 23h/J if S = 0.2. It should be 
noted that the main characteristics of the angular variation at long times (such as 
maximum I), for H [li, and minimum near the 'magic angle' in the zx plane) can be 
observedevenattimesasshortasX-X,,= I(figurel(c))for6 = 0 . 5 . 0 r X - X u = 2 . 5  
if 6 = 0.2 (not shown in the figure). The effect of considering different valuesof X,will 
be to shift the beginning of the diffusive process, yielding the same angular variations of 
figure 1 as a function of X - X,,, i.e. figure I(b) should be considered as corresponding 
t o X  - X, = 0.25, l ( c )  to X - X, = 1 and l ( d )  to X - X,, = 9.5. 

In figure 2 we have chosen two representative orientations of the magnetic field, 
Hl la (0  = 90",q = O 0 ) a n d H ~ ~ i ( 8  = O",normaltothelayer),toshowthetimeevolution 
of yd(O, rp, A'), with X, = 0.5 and S = 0.5. It can be observed that for X> X, = 0.5, yd 
is strongly damped when H is along the layer (H (1 a),  while its decay is slow for H along 
the normal to the layer (H 11 2). In order to determine the effects of these different decay 
rates on the ESR linewidth, we calculated AH for these two orientations, using equation 
(14). Figure 3 shows the resulting dimensionless linewidths, plotted as a function of the 
dimensionless cut-off time X,. We have considered also the cases 6 = 0.2 and X, = 0.3. 
It can be seen that the lower X, increases the linewidth for H /I i, while the linewidth for 
H 11 f remains practically the same, for the same cut-off times. For the lower 6, instead, 
it  is observed that the linewidths with both H normal andNlying on the layer increase. 

10f1/J if we take 6 = O S ,  or r 

,. 
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I 
50 100 150 200 

x , i  Jrc/Tl 

Figure3. Dimensionless ESR lineu,idth plotred asalunction ofthedimensionlesscut-ofltime 
X,. and calculated lor the extreme values of 6 in equation (12) and lor two values 01 the 
quantum coherence time X,,, In each case. heavy curves (or dots) correspond to H 11 i and 
light ones to H 11 f. 

0 , 
0 0.5 I I .5 

&3 

Figure 4. Linewidth anisotropy q = A H ( I ? ~ ~ t ) / A H ( H ~ ~ f )  obtained lor the dimensionless 
cut-of1 time X, =WO. as a function of [he dimensionless time X,, = Jr,,/fi lor which i t  i s  
assumed thal quantum coherence is broken. The two exlreme values of 6 in equation (12) 
have been considered. 

To obtain a clearer insight into the influence on our results of the assumed values of 
X, and the values of 6 predicted by the various theories, we have plotted in figure 4 the 
quotient q = A H ( H / j i ) / A H ( H  112). giving the linewidth anisotropy, at X ,  = 200, as a 
functionofX,. fortheextremevaluesd = 0.2and 6 = 0.5. Althoughtheabsolutr values 
of the linewidth are strongly dependent on 5,  as shown in figure 3,  figure 4 shows that 
the values of the anisotropy q only vary about 20% between the extreme values of 6, 
for X u  s 0.5. On the other hand, figure 4 shows that I) depends strongly on XI,. It is 
interesting to remark that if we had considered Xu = 1, i.e. that the short-time regime 
wasvalid until T = h/J.asdone byGulleyeral[12]. we would haveobtained I) = 1, i.e. 
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the same linewidth for H 11 1 and H 11 i, which does not coincide with the experimental 
data. The horizontal line in figure 4 corresponds to the value of q that would result if 
only short-time contributionsdetermine the linewidth. i.e. the anisotropy corresponding 
to the dipolar second moment. 

Tocompareourcalculationswithexperimental data, weconsider thecaseofCu(D,L- 
but)?. alayeredcu-amino acid system for whichcanbeestinmtedj s J/J '  5 15 [14.19]. 
In this case, equation (3) will give X, in the range 25 s X, s 225. We have plotted in . 
figure5 theexperimentaldataofthe linewidth in Cu(D,L-but)2, takenfrom [20], together 
withtheangularvariationpredictedbyourmodel. Anisotropiclinewidth AH" = 30.9 G 
was subtracted from experimental data, and the full curves in figure 5 correspond to 
AH,(O, p') - AH,, = 0.34AHh5(8. 91). Here AHM is given byequation (14), using J = 
0.6 K [19], X, = 200. 6 = 0.2. X, = 0.3 and the cell parameter taken from [20]. The 
residual linewidth AH,  = 30.9 G may be attributed to perlurbative interactions other 
than dipolar. 

The factor 0.34 needed for our calculations to fit the absolute valuesof the linewidth, 
and the greater anisotropy of the calculated linewidth in the layer, can be explained by 
considering that our model was developed for a square lattice, while the Cu(D,L-but)? 
lattice is nearly triangular. The calculation of the dipolar second moment for this 
geometryshowsa than for thesquare lattice. However, 
it can be seen in figure 5 that our model gives the correct q for this system at X, = 200, 
i.e. for the cut-off time rc = 200A/J. Using equation (3). we may conclude that J/Y = 
14 in Cu(D,L-but),. Although it is also possible to adjust the experimental data using 
Xu = 0.5, a Yalue X, = 400 is needed in this case to obtain the experimental anisotropy, 
leading to J / J '  = 20. If XI, = 0.6, then X, = 800 and J /J '  = 30. Estimations based on 
previous work [14,19.20] put an upper boundJ/J' G 15, so that we may establish that 
it should be X u  < 0.5. supporting the assumption that the breakdown of quantum 
coherence in our non-ideal systems must be at times tl, s 0.5h/J. 

5. Conclusions 

Our calculation of the dipolar field correlation function ljfd at high temperature allowed 
us to obtain the way in which its angular dependence evolves with time in a two- 
dimensional system. Working in reciprocal space provides a natural way to avoid the 
use of arbitrary functions for intermediate times, by assuming that a diffusive equation 
provides a good description of the normal modes of spin-pair correlations as soon as 
quantum coherence is broken. 

In this way, we obtained information about yd at every time, illustrating the way in 
which local field dipolar correlations are strongly damped when the magnetic field is 
along the layer but have a longer life when H is in the normal direction. We show that 
the angular dependence obtained by Richards, characteristic of 'long times', is reached 
at times IS 23h/J. 

Systems with appreciable interlayer exchange are considered by introducing a cut- 
off of the 2D correlations. The time integration of yd yields the ESR linewidth, whose 
angular dependence is analysed as a function of the dimensionless cut-off time X, and 
the quantum coherence time Xu. It is shown that, in order to obtain the correct dipolar 
contribution to the linewidth in the layered Cu-amino acid system Cu(D,L-but)2, xu = 
i%/2Jmust be considered an upper limit for the breakdown of quantumcoherence. Using 

~ 
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Figure 5.  Experimental ESR linewidth data as a function of the orientation of the magnetic 
field H for the layered Cu-amino acid Cu(D.L-but),, taken from [ZO]. An isotropiclinewidth 
AH,> = 30.9G has been subtracted. The full curyes correspond to the expression 
AH, - AH,, = 0.34AHM, where AHM is that predicted by our model using X, = 200. X,  = 
U.3 .6  = O.Zand previous measured parametersofCu(D,L-bul)l [19,20]. 

bounding values for cut-off times based on previous estimations 119,201, we showed 
that experimental data are consistent with J/J' = 14 and X,, = 0.3. 

Itisinterestingtoremark that ourresultssupporta = 1 inequation(3),inagreement 
with the reasoning of Hennesy era! [SI. Smaller values of a would yield much smaller 
values for the cut-off times. for which the experimental anisotropy could not be repro- 
duced. 

Our method may be applied to any square ?D magnetic system with arbitrary values 
of the interlayer exchange. to obtain the correct dipolar contribution to the high- 
temperature ESR linewidth. 
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